Visible Light Responsive Electrospun TiO₂ Fibers Embedded with WO_3 Nanoparticles

Kazuya Nakata, *1,2 Baoshun Liu, 1 Yuri Goto, 1,3 Tsuyoshi Ochiai, 1,2 Munetoshi Sakai, 1

Hideki Sakai,³ Taketoshi Murakami,¹ Masahiko Abe,^{2,3} and Akira Fujishima^{*1,2}

¹Photocatalyst Group, Kanagawa Academy of Science and Technology,

KSP Building East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012

² Research Institute for Science and Technology, Energy and Environment Photocatalyst Research Division,

Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

³Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510

(Received July 14, 2011; CL-110607; E-mail: pg-nakata@newkast.or.jp)

 $TiO₂-WO₃$ composite fibers were prepared by electrospinning. The fibers have an average diameter of $1.0 \,\mu m$. The XRD pattern of the $TiO₂–WO₃$ composite fibers indicates the presence of anatase and rutile phases of $TiO₂$ and an orthorhombic phase of $WO₃$. The photocatalytic degradation of acetaldehyde under visible light was achieved with the $TiO₂$ $WO₃$ composite fibers.

Photocatalysis based on $TiO₂$ is widely used for many applications such as air and water purification, self-cleaning and antibacterial surfaces. $1-3$ A current effort in photocatalysis is the improvement of the photocatalytic performance of $TiO₂$, which is only able to use UV light $(400 nm)$ comprising 3% of the solar spectrum. Thus, it is very important to develop efficient photocatalysts that can be driven by visible light comprising about 42% of the energy of the solar spectrum. $TiO₂–WO₃$ composites have been shown to be efficient photocatalysts driven by visible light because of the combination of the narrow band gap of WO_3 and charge separation at the interface of TiO_2 and WO_3 .^{4–7}

Another approach to improve the efficiency of $TiO₂$ is the introduction of a micro- or nanostructure because micro- or nanostructured materials have a larger surface area and a stronger adsorption capacity, which favors photocatalytic performance. Electrospinning is a significant process because it allows for the preparation of fibers with facility and versatility.⁸⁻¹⁰ The electrospun fibers can be treated as self-standing film and have 3-D open structure, which is an advantage for photocatalytic reaction.

In this work, the preparation, characterization, and evaluation of the photocatalytic performance of a $TiO₂–WO₃$ composite fiber prepared by electrospinning was examined.

The preparation of the $TiO₂-WO₃$ composite fiber was carried out as follows: poly(vinylpyrrolidone) (PVP) was dissolved in a mixed solution containing $EtOH$ (13 mL) and acetic acid (1.9 mL) followed by stirring for 1 h. The obtained solution was added to titanium tetraisopropoxide (6.3 mL). After further stirring for 1 h the solution was added to WO_3 particles (1.0 g, Aldrich). The as-prepared solution was loaded into a syringe and the nozzle, which was connected to a positive electrode from a high voltage generator, and a metallic plate covered with a piece of aluminum foil was used as a collecting substrate; this was grounded. The voltage was set at 15 kV and the working distance was 15 cm. The electrospun fiber was calcined at 600° C for 2h in air to remove the PVP and to crystallize it.

Figure 1. SEM images of the $TiO₂–WO₃$ composite fiber (a) before and (b) after calcination.

Figure 1 shows SEM images of the as-spun and calcined $TiO₂–WO₃$ composite fibers. The fibers had an average diameter of $1.2 \mu m$ before calcination. It seems that the fibers contain WO₃ particles. After the calcination the average diameters of the fibers decreased slightly (ca. $1.0 \,\mu\text{m}$) because the organic component, PVP, was selectively removed by combustion and the inorganic components became crystallized.

Figure 2 shows an XRD pattern for the $TiO₂–WO₃$ composite fibers after calcination. The $TiO₂–WO₃$ composite

Figure 2. XRD pattern of the $TiO₂–WO₃$ fibers.

Figure 3. UV-visible absorption spectra of the $TiO₂$ and $TiO₂–WO₃$ composite fibers.

fibers contain an anatase phase and a rutile phase of $TiO₂$ and an orthorhombic phase of WO_3 .

UV-vis spectra for the TiO₂ and TiO₂-WO₃ composite fibers are shown in Figure 3. A significant increase in the absorption at wavelengths shorter than 400 nm is assigned to the intrinsic band gap absorption of $TiO₂$. The absorption spectrum of the $TiO₂–WO₃$ composite fibers indicates the absorption of more visible light than that of pristine $TiO₂$ fibers, which is attributed to the fact that $WO₃$ has a narrow band gap.

We investigated the photocatalytic decomposition of acetaldehyde and the simultaneous production of $CO₂$ under visible light ($>420 \text{ nm}$) using the TiO₂-WO₃ composite fiber after it was calcined, as shown in Figure 4. After reaching equilibrium in the dark over 1 h the concentration of acetaldehyde decreased to 70 ppm from an initial concentration of 100 ppm, and this was due to the physical adsorption of acetaldehyde on the surface of the $TiO₂$ -WO₃ composite fiber. Upon irradiation by visible light at an intensity of 6000 lx, the concentration of the acetaldehyde decreased whereas that of $CO₂$ increased; its concentration

Figure 4. Photodecomposition of acetaldehyde and the production of $CO₂$ on the TiO₂-WO₃ composite fibers after calcination as a function of visible light irradiation time.

reached 78 ppm after 90 min. Based on the degradation reaction of acetaldehyde, the production of $CO₂$ will be twice (200 ppm) that of the initial concentration of acetaldehyde. 8 In this case, the concentration of $CO₂$ was lower than expected for this experiment because of the generation of the intermediate product, acetic acid, during the degradation process instead of $CO₂$,¹¹ which is similar to the case that pristine $WO₃$ showed uncompleted photocatalytic degradation for acetaldehyde.¹²

In conclusion, a $TiO₂-WO₃$ composite fiber was prepared by electrospinning. The composite fiber shows visible light absorption. The photocatalytic degradation of acetaldehyde under visible light was achieved for the $TiO₂-WO₃$ composite fibers.

This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- 1 A. Fujishima, K. Hashimoto, T. Watanabe, $TiO₂ Photocatalysis$: Fundamentals and Applications, BKC, Tokyo, 1999.
- 2 A. Fujishima, T. N. Rao, D. A. Tryk, [J. Photochem. Photob](http://dx.doi.org/10.1016/S1389-5567(00)00002-2)iol., C [2000](http://dx.doi.org/10.1016/S1389-5567(00)00002-2), 1, 1.
- 3 A. Fujishima, X. Zhang, D. A. Tryk, Surf. Sci[. Rep.](http://dx.doi.org/10.1016/j.surfrep.2008.10.001) 2008, 63, 515.
- 4 Y. R. Do, W. Lee, K. Dwight, A. Wold, J. Soli[d State Chem.](http://dx.doi.org/10.1006/jssc.1994.1031) 1994, 108[, 198.](http://dx.doi.org/10.1006/jssc.1994.1031)
- 5 Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, Y. R. Do, [J. Cata](http://dx.doi.org/10.1006/jcat.1999.2776)l. 2000, 191[, 192.](http://dx.doi.org/10.1006/jcat.1999.2776)
- 6 J. H. Pan, W. I. Lee, [Chem. Mater.](http://dx.doi.org/10.1021/cm0522782) 2006, 18, 847.
- K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, W. I. Lee, [Chem. Mater.](http://dx.doi.org/10.1021/cm000858n) 2001, 13, 2349.
- 8 K. Nakata, N. Watanabe, Y. Yuda, D. A. Tryk, T. Ochiai, T. Murakami, Y. Koide, A. Fujishima, [J. Ceram. Soc. Jpn.](http://dx.doi.org/10.2109/jcersj2.117.1203) 2009, 117, [1203.](http://dx.doi.org/10.2109/jcersj2.117.1203)
- 9 K. R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D. A. Tryk, A. Fujishima, J. Nanosci[. Nanotechno](http://dx.doi.org/10.1166/jnn.2011.3805)l. 2011, 11, 3692.
- 10 K. R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D. A. Tryk, A. Fujishima, J. Nanosci[. Nanotechno](http://dx.doi.org/10.1166/jnn.2010.3143)l. 2010, 10, 7951.
- 11 Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Environ. Sci[. Techno](http://dx.doi.org/10.1021/es8016842)l. 2008, 42, 8547.
- 12 R. Abe, H. Takami, N. Murakami, B. Ohtani, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja800835q) 2008, 130[, 7780.](http://dx.doi.org/10.1021/ja800835q)